batch_correct_norm_cts.Rd
Batch correct normalized counts for visualizations or other downstream non-DE analysis applications.
batch_correct_norm_cts( x, de_method = "edger", correction_method = "removeBatchEffect", new_assay_name = "batch_corr", ... )
x | A BbcSE object |
---|---|
de_method | "edger" or "deseq2" |
correction_method | "removeBatchEffect" or "combat" |
new_assay_name | Name of the batch-corrected counts stored in new assay in 'norm_cts' slot. |
... | passed to batch correction function. |
A BbcSE object
removeBatchEffect ComBat
if (FALSE) { # Default is limma::removeBatchEffect bbc_obj_batch <- batch_correct_norm_cts(bbc_obj, batch=colData(bbc_obj)$Rep, design=model.matrix(~Condition, data=colData(bbc_obj))) plot_PCA(bbc_obj_batch, assay_name = "batch_corr", adonis=FALSE, color_by="Time", shape_by="Rep") # Combat is also supported bbc_obj_batch <- batch_correct_norm_cts(bbc_obj, new_assay_name="combat", batch=colData(bbc_obj)$Rep, correction_method = "combat", mod = model.matrix(~Condition, data=colData(bbc_obj))) plot_PCA(bbc_obj_batch, assay_name = "combat", adonis=FALSE, color_by="Time", shape_by="Rep") }